Search results

Search for "piezoelectric cantilever" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • kV output voltage using 3D printed conductive polylactic acid polymer. In 2021, they [101] integrated a lithium niobate crystal, a piezoelectric cantilever switch, and a capacitive load into a single printed circuit board (PCB). The output voltage ranges from 15.5 to 1480 V, and the cantilever switch
PDF
Album
Review
Published 12 Apr 2022

Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement

  • Steven Ian Moore,
  • Michael G. Ruppert and
  • Yuen Kuan Yong

Beilstein J. Nanotechnol. 2017, 8, 358–371, doi:10.3762/bjnano.8.38

Graphical Abstract
  • multifrequency AFM and has the potential to provide higher resolution imaging on higher order modes. Keywords: atomic force microscopy; multifrequency AFM; multimodal AFM; piezoelectric cantilever, self-sensing; Introduction The invention of the atomic force microscope (AFM) [1] provided for the observation of
  • analysis of the piezoelectric cantilever’ outlines the modeling approach to determine the spatial charge distribution of the piezoelectric transducer as a function of its modal response. In section ’Proposed piezoelectric cantilever designs’, results of this analysis are used to determine the design of the
  • a single mode each. Section ’Instrumentation for multifrequency AFM’ outlines a method to design and instrument the cantilevers to target multiple modes. Results and Discussion Modal analysis of the piezoelectric cantilever Figure 1 shows the silicon cantilever analyzed in this work. The dimensions
PDF
Album
Full Research Paper
Published 06 Feb 2017

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

  • Michael G. Ruppert and
  • S. O. Reza Moheimani

Beilstein J. Nanotechnol. 2016, 7, 284–295, doi:10.3762/bjnano.7.26

Graphical Abstract
  • fundamental mode, and phase imaging on the higher eigenmode. Keywords: atomic force microscopy; charge sensing; feedthrough cancellation; multimode sensor; piezoelectric cantilever; self-sensing; Introduction Emerging methods in multifrequency atomic force microscopy (MF-AFM) rely on the detection and
  • at the respective mode. System identification The AFM cantilever used in this work is a piezoelectric self-actuated silicon microcantilever described in section Modeling. Compared to a standard base excited cantilever whose frequency response is shown in Figure 6a, the piezoelectric cantilever has
  • cantilever holder to mount the piezoelectric cantilever used in this work. The signal access module (SAM) of the AFM provides the relevant inputs and outputs to change the feedback signal from the OBD sensor measurement to charge measurement. Approach and retract curves as well as all AFM imaging data were
PDF
Album
Full Research Paper
Published 24 Feb 2016
Other Beilstein-Institut Open Science Activities